Embedded Systems etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
Embedded Systems etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

31 Mayıs 2024 Cuma

Diyot Tipleri, Kullanım Alanları

Bu yazıda diyot tipleri ve ana kullanım alanları listelenmiştir.

  • P-N Junction-General Purpose Diode: Akımın tek yönde iletilmesini sağlar. İletim yönünde üzerine ~0.7V gerilim düşer. Genellikle doğrultucu olarak kullanılır. Aynı zamanda devre güç girişlerinde ters kutuplamadan/polariteden korunmak için de kullanılır.


  • Schottky Diode: Genel kullanım diyot ile benzer özelliklerdedir. Farklı kılan kısmı İletim yönünde üzerine daha düşük gerilim düşer. Bu sayede yüksek hızlı anahtarlama devrelerinde hızlı geri toparlama özelliği sayesinde sıklıkla kullanılır. Bu uygulamalarda üzerinde harcanan güç daha düşük olduğu için verimi daha yüksektir.

  • Zener Diyot: Belirli bir ters gerilimde iletime geçer ve gerilimi sabitlemeye yarar. Bu özelliği sayesinde gerilim regülatör devrelerinde, referans gerilim üreteçlerinde ve aşırı gerilim koruma devrelerinde kullanılır.

  • Transient Voltage Suppression Diode (TVS): Ani ve yüksek gerilim yükselmelerine karşı koruma sağlar. Elektronik cihazları yıldırım düşmesi, elektrostatik deşarj veya endüktif yüklerin sebep olduğu ani gerilim yükselmelerinden korur.


  • Light-Emitting Diode (LED): İleri yönde akım geçtiğinde ışık yayan yarı iletken diyottur. Farklı yarı iletken malzemeler kullanılarak farklı dalga boylarında (renklerde) ışık üretebilir. Aydınlatma, gösterge, sinyalizasyon ve haberleşme gibi birçok alanda kullanılır.


  • Fotodiyot: Üzerine düşen ışık miktarına bağlı olarak akım üreten diyottur. Işığı elektrik sinyaline dönüştürdüğü için ışık sensörleri, otomatik aydınlatma sistemleri, kamera pozometreleri ve tıbbi görüntüleme cihazlarında kullanılır.


  • Varaktör Diyot (Varikap): Uygulanan ters gerilime bağlı olarak kapasitans değeri değişen diyottur. Bu özelliği sayesinde radyo ve televizyon alıcılarında frekans ayarlama, osilatör devrelerinde frekans kontrolü ve parametrik yükselteçlerde kullanılır.


  • Tünel Diyot: Kuantum tünelleme etkisiyle çalışan özel bir diyot türüdür. Çok hızlı anahtarlama özelliği sayesinde yüksek frekanslı osilatör ve yükselteç devrelerinde kullanılır.


  • Lazer Diyot: Uyarılmış ışık emisyonu ile ışık üreten özel bir diyot türüdür. Ürettiği ışık, tek renkli, tutarlı ve yönlüdür. Optik fiber iletişim sistemleri, barkod okuyucular, lazer yazıcılar, lazer işaretleyiciler ve tıp alanında kullanılır.



Kaynaklar

  • https://www.globalspec.com/learnmore/semiconductors/discrete/diodes/general_purpose_diodes
  • https://www.build-electronic-circuits.com/schottky-diode/
  • https://www.build-electronic-circuits.com/zener-diode/
  • https://uk.rs-online.com/web/content/discovery/ideas-and-advice/tvs-diodes-guide
  • https://www.electrical4u.com/led-or-light-emitting-diode/
  • https://elektrikbilim.com/1009-fotodiyotlar.html
  • https://diyot.net/diyot-cesitleri-1/
  • https://www.derstagram.com/tunnel-diyot-nedir-nasil-calisir/
  • https://tekfaz.com/lazer-diyot-nedir-yapisi-ve-calisma-prensibi.html

19 Mart 2024 Salı

CAN Bus Frame Tipleri

Yazıya başlamadan önce CAN Bus temelleri ve mesaj yapısının temellerini incelemek için bu linkte yer alan blog yazısını inceleyebilirisiniz.

CAN Bus hattında kullanılan 4 tip frame (çerçeve, yapı) vardır.

  • Data Frame: Data framei, temelde data/veri taşımak için kullanılan ana yapıdır. CAN Bus sistemleri arasında veri transferi için kullanılır. Tek bir data framei üzerinden minimum 1 maksimum 8 byte veri transferi tek seferde gerçekleştirilebilir.
  • Remote Frame: Remote frame, veri talep etme frameidir. Remote framede tanımlanan ID CAN Bus ağına basılır. İlgili mesaj paketini barındıran sistem bu ağa ilgili data frameini basar. Remote frame, bir sistemin, bir veriye özellikle ihtiyaç duyduğu zamanda kullanılır.
  • Error Frame: SOF ile CRC arasında 6 veya 12 bit boyunca aynı seviye (High/Low, Recessive/Dominant) veri gönderilmesiyle error framei tanımlanmış olur ve hattaki sistemler ilgili framei error frame olarak işaretler. Error frame istemli gönderilen bir frame değildir. Bir sistem bir paketi göndermeye başladıktan sonra bir hata tespit edilirse ilgili frame error frameine çevrilir.
  • Overload Frame: CAN Bus peripheralı meşgul olduğu durumlarda hattı meşgul tutmak için overload frame hatta basar. Bu bilgi hattın durdurulması için kullanılır. Günümüzde genellikle kod üzerinden kontrol edilmez. CAN Bus peripheralları bu durumu kendisi tespit eder ve gerektiği kadar hattı meşgulde tutar, sonrasında bırakır.



Kaynaklar
  1. https://medium.com/@mohammednumeir13/can-protocol-types-of-can-frames-51c8444176bb
  2. https://www.researchgate.net/publication/340883976_Cyberattacks_and_Countermeasures_For_In-Vehicle_Networks/figures?lo=1

6 Mart 2024 Çarşamba

POWERB Alkaline LR03 AAA 1.5 Volt Pil Değerlendirmesi @250mA

Bu yazıda testimizi 250 mA seviyesinde gerçekleştirdik. 250 mA sabit akımda voltaj grafiği 800 mV'u yaklaşık 2,4 saatte kesiyor. Bu durumda POWERB Alkaline LR03 AAA pilin kapasitesi 2,4 h*250 mA hesabından 600 mAh olarak bulunur.

Test düzeneği ve ölçüm ile ilgili konulara buradaki yazıdan ulaşabilirsiniz.









Label order: Row ID | Time Stamp (Millisecond) | Voltage (mV) | Current (mA) | Set Current (mA)

Veri seti

Pil Kıyaslama Yazıları

1 Mart 2024 Cuma

CAN Bus Fiziksel Katmanı

CAN (Controller Area Network) Bus CANH, CANL şeklinde isimlendirilen ikili hat üzerinden birden çok sistemin konuşabildiği, aynı anda tek bir sistemin konuştuğu (half-dublex), yüksek hızlı uygulamalara izin veren bir ağ yapısıdır.

Haberleşme yapılarında farklı seviye katmanlar ve uygulama tipleri vardır. Bu kapsamda CAN Bus'ın fiziksel katmanı üzerine detaylı bir inceleme gerçekleştirilmiştir.

Bu konuya giriş yaparken donanım seviyesinden işi ele alıp elektriksel seviyeye ilerlemek mantıklı olacaktır.

Öncelikle yazı  kapsamında kullanılacak tanımlardan bahsetmek gerekirse, sistem ifadesini CAN Bus hattına bağlanabilen ve haberleşebilen her şey olarak düşünebiliriz. Otomotiv üzerinden örnek verecek olursak VCU, BMS, Inverter gibi CAN Bus ile haberleşen yapılara sistem diyebiliriz.

Bir CAN Bus hattı CANH ve CANL hatlarının burulmuş çifti (twisted pair) ile birbirine bağlanır. Bu yapı ethernet kablolarında da benzer şekilde kullanılır. Bu bağlantı elektromanyetik yayılıma karşı hattın güçlü olmasını sağlar. Bu yapıda hat üzerinde indüklenen gürültü akımları her iki hatta neredeyse ortak seviyede etkileyeceği için CANH, CANL arasındaki fark neredeyse sabit kalır. 

Örnek bir burulmuş çift (twisted pair) görseli aşağıda görebilirsiniz.

CANH, CANL twisted pair kablo üzerinden iletildikten sonra elektronik devre üzerindeki yapılar ile karşılaşıyoruz. Burada temel yapıyı anlamak için CAN Bus dönüştürücüler ile anlatıma devam etmek faydalı olacaktır. Sektörde de sıklıkla kullanılan SN65HVD1050 entegresini örnek olarak ele alabiliriz. Bu yapılar mikrodenetleyicilerden çıkan CANTX, CANRX pinlerini CANH, CANL seviyesine dönüştürür. CAN Bus dönüştürücü entegrelerinin ana görevi budur. Tamamen analog yapılar bu dönüşüm için yeterlidir. Bununla birlikte hat ile ilgili temel elektriksel kontrolleri yapabilir. Entegre özelinde sıcaklık kontrolü ve koruması yapabilir. ESD korumaları sağlayabilir. Bublar zorunlu fonksiyonlar değildir.

SN65HVD1050'nin iç yapısı aşağıdaki gibidir.

CAN Bus dönüştürücüleri giriş tarafında CANH, CANL değerlerinin elektriksel farkına göre RXD ucuna 1/0 bilgisi gönderir. CANH, CANL aynı değerlerde ise lojik 1, aradaki fark 2.5 V ise lojik değer 0'dır.


Gönderici taraftan bakacak olursak TXD pini üzerinden bir sürücü kısım aktifleşir ve çıkış anahtarlarını sürer. Bu anahtarlar TXD lojik 0 iken aktif çalışır ve CANH, CANL hattını 2.5 V farka çeker. Aksi durumda aynı değerde tutar.

CAN Bus'ın özelliklerinden biri hattı sürerken aynı zamanda aktif olarak okumaya devam etmesi ve CAN mesaj paketi içerisinde belli bitleri takip ederek karşı alıcının mesajı sağlıklı bir şekilde alıp almadığını doğrulamasıdır. Bu sayede gönderilen mesajların en az bir alıcıya ulaşıp ulaşmadığından gönderici taraf emin olur.

Ek ve büyük bir katkısı da veri gönderirken okumaya devam etmesi sayesidne herhangi bir durumda önceliği yüksek bir mesaj paketi başka bir sistem üzerinden gönderilirse, hattı her sistem sürekli okuyarak çalışmaya devam ettiği için ilgili yüksek öncelikli mesaja diğer tüm sistemler izin/öncelik verir.

Kaynaklar:

  1. https://www.ti.com/lit/an/sloa101b/sloa101b.pdf

Duracell Alkaline LR14 1.5 Volt Pil Değerlendirmesi @250mA

Bu yazıda testimizi 250 mA seviyesinde gerçekleştirdik. 250 mA sabit akımda voltaj grafiği 800 mV'u yaklaşık 19,8 saatte kesiyor. Bu durumda Duracell Alkaline LR14 pilin kapasitesi 19,8 h*250 mA hesabından 4950 mAh olarak bulunur.

Test düzeneği ve ölçüm ile ilgili konulara buradaki yazıdan ulaşabilirsiniz.









Label order: Row ID | Time Stamp (Millisecond) | Voltage (mV) | Current (mA) | Set Current (mA)

Veri seti

Pil Kıyaslama Yazıları

26 Şubat 2024 Pazartesi

ESP32 ile Kristal veya Osilatör Kullanmadan RMII Üzerinden Ethernet Haberleşmesi ve İpuçları

İnternette gördüğüm ESP32 ve ethernet uygulamalarının çoğunda ethernet chipine kristal takarak uygulama çalıştırılmış. Bunun sinyal kalitesi açısından faydası olabilir ancak tek çözüm bu değil. ESP32 modüllerinden de ethernet için gerekli clock çıkışını alabilirsiniz.

Bunun için örnek devrede de gösterildiği gibi ESP32 ile ethernet chipinin clock uçlarını birleştirmek yeterli. Burada frekans 50 MHz mertebesinde olduğu için mümkün oldukça yakın olması önemli.

Benim yaptığım uygulamadan hat boyu yaklaşık 44 mm ve 2 adet via kullanılıyor. Buna rağmen sorunsuz bir şekilde sistemin çalıştığını gördüm.



ESP32 clock çıkışı için GPIO0, GPIO16, GPIO17 pinleri kullanılabilir.


Arduino arayüzünde varsayılan olarak clock ESP32'ye girecek şekilde tanımlanmıştır. Ethernet clock çıkışını tanımlamak için aşağıdaki satır kullanılabilir. Bu begin fonksiyonu üzerinden ethernet chipi, clock yönü ve pini seçilebilir.

ETH.begin(0,-1,23,18,ETH_PHY_LAN8720,ETH_CLOCK_GPIO17_OUT);

Kaynaklar;

  • https://docs.espressif.com/projects/esp-idf/en/release-v3.1/api-reference/ethernet/esp_eth.html
  • https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf

20 Şubat 2024 Salı

Panasonic General Purpose Zinc Carbon R6BE AA 1.5 Volt Pil Değerlendirmesi @250mA

Bu yazıda testimizi 250 mA seviyesinde gerçekleştirdik. 250 mA sabit akımda voltaj grafiği 800 mV'u yaklaşık 1,4 saatte kesiyor. Bu durumda Panasonic General Purpose Zinc Carbon R6BE AA pilin kapasitesi 1,4 h*250 mA hesabından 350 mAh olarak bulunur.

Test düzeneği ve ölçüm ile ilgili konulara buradaki yazıdan ulaşabilirsiniz.







Label order: Row ID | Time Stamp (Millisecond) | Voltage (mV) | Current (mA) | Set Current (mA)

Veri seti

Pil Kıyaslama Yazıları


10 Ocak 2024 Çarşamba

STM32F103 Mikrodenetleyici Çevre Birimlerinde Karşılaştığım Bir Problem #STM32Tips

Konunun hikayesinden başlamak gerekirse, STM32F0 ve STM32F1 serisi işlemcilerden oluşan ve CAN Bus üzerinden birbirleri ile haberleşen bir tasarım üzerine çalışıyordum. Her bir kart için CAN Bus bağlantısının yanında bilgisayar bağlantısını da kurmak için USB bağlantısını sisteme dahil etmiştim. Bu tasarım STM32F0 serisi işlemcide CAN Bus ve USB sorunsuz çalıştı.

STM32F1 serisi işlemciyi kullanırken aynı yazılıp mimarisi üzerinden devam ediyordum ancak bir sorun ile karşılaştım. Bir şekilde CAN Bus hattını kullanamıyordum. Problemi araştırmaya başladığımda USB ve CAN Bus'ın birlikte kullanımı ile ilgili başka problem yaşayanların da olduğunu gördüm. Sonrasında kullandığım işlemci olan STM32F103CB'nin datasheetini (Reference Manual RM0008 Rev 21) inceledim. CAN Bus kısmında aşağıdaki gibi bir not olduğunu gördüm.

"In low, medium-, high- and XL-density devices the USB and CAN share a dedicated 512-

byte SRAM memory for data transmission and reception, and so they cannot be used concurrently (the shared SRAM is accessed through CAN and USB exclusively). The USB and CAN can be used in the same application but not at the same time."

Buradan anladığımız CAN Bus ve USB işlemci üzerinde aynı SRAM alanlarını kullanıyor ve bu yüzden her iki çevre birimi birlikte kullanılamıyor. USB'yi kapatıp CAN Bus'ı çalıştırmak veya tam tersi mümkün ancak her ikisi aynı anda asla çalıştırılamıyor. Bu yüzden örnek vermek gerekirse CAN Bus üzerinden alınan bir veriyi USB üzerinden gerçek zamanlı alıp işlemek mümkün değil.

Ek olarak STM32F0 serisi ile bir çok uygulama yapmıştım ve bu yüzden USPDP, USPDM hatlarını direkt konnektöre bağlamıştım. STM32F103CB işlemci kullanırken USBDP hattına 3.3 V'a 1.5 kR pull-up resistor gerekiyormuş.

STM32 USB kullanılan uygulamalarda donanım tasarımı hakkında aşağıdaki doküman yayınlamış. Donanım tarafında yapılması gereken işler tek bir dokümanda bütün işlemci ailesi için verilmiş. Gelecek tasarımlar için işe yarar gibi görünüyor.


Link: https://www.st.com/resource/en/application_note/an4879-introduction-to-usb-hardware-and-pcb-guidelines-using-stm32-mcus-stmicroelectronics.pdf (10.01.2024)

3 Ocak 2024 Çarşamba

Panasonic Alkaline Power LR6 AA 1.5 Volt Pil Değerlendirmesi @500mA

Bu yazıda testimizi 500 mA seviyesinde gerçekleştirdik. 250 mA standardına göre yapılmadığı için katalog değeri olan kapasite değeri değildir ancak 500 mA sabit akımda Panasonic Alkaline Power LR6 AA pilin kapasitesi 1050 mAh'dir. 250 mA için daha yüksek olması gerekmektedir. İlgili grafikler ve veri setleri aşağıdadır.

Test düzeneği ve ölçüm ile ilgili konulara buradaki yazıdan ulaşabilirsiniz.




Label order: Row ID | Time Stamp (Millisecond) | Voltage (mV) | Current (mA) | Set Current (mA)

Veri seti

Pil Kıyaslama Yazıları



31 Aralık 2023 Pazar

CAN Bus Temel Özellikler, Avantajları ve Dezavantajları

Temel Özellikler

  • Bükümlü çift yapısında iki kablo
  • Hat baş ve sonra 2 direnç ile sonlandırılır
  • ~40 metre kablo için 1 Mbps veri iletim hızı vardır
  • Bir mesaj paketinde azami 8 byte veri gönderilir
  • Mesaj gönderme alma prosedürü hatalara dirençli (robust) bir şekilde çalışır
  • Mesaj ID'sine göre önceliklendirme yapısı vardır
  • İki sistem aynı anda mesaj paketi iletmek istese bile ID önceliklendirme yapısı hatayı engeller
  • Mesajlar hat üzerindeki tüm sistemlere iletilir
  • Mesaj iletilmeme durumunda yeniden gönderme yapısı CAN kontrolcüsü üzerinde gerçekleştirilir
  • Sabit/Sürekli bir hata durumunda CAN kontrolcüsü kendini belli durumlarda durdurur

Avantajlar

  • Düşük kablolama karmaşıklığı
  • Araç kablolama işlemlerinde kolaylık
  • Hatta yeni bir sistem eklemek veya hattan bir sistemi kaldırmakta kolaylık
  • Kapalı bir sistem hattı etkilemez
  • Çoklu yönetici, her bir sistem hatta veri basabilir ve hat üzerinde bulunan veriyi okuyabilir
  • Elektromanyetik yayılımdan etkilenmesi halinde emniyetlidir
  • Hata tespit yapıları vardır
  • Arıza durumunda teşhis ve bakım kolaylıkla yapılır
Dezavantajlar
  • Veri iletişim hızı ~1Mbps hızında sınırlıdır
  • Basit protokollere göre uygulaması daha maliyetlidir
  • Siber ataklara karşı açıktır. Kolaylıkla hatta erişilip veriler manipüle edilebilir




23 Aralık 2023 Cumartesi

CAN Bus Temelleri ve Bir Mesajının Yapısı

CAN (Controller Area Network) Bus Robert Bosch GmbH tarafından oluşturulmuştur. 1986'da RB GmbH tarafından SAE'de yayınlanmıştır. Takip eden yıllarda CAN Bus'ın farklı versiyonları yayınlanmıştır ve ISO tarafından standardize edilmiştir. CAN Bus günümüzde içten yanmalı ve elektrikli bir çok araç tipinde aktif olarak kullanılan ve temel kontrol yetenekleri dolayısı ile sıklıkla tercih edilen bir haberleşme protokolüdür.

CAN Bus, mesaj tabanlı bir haberleşme protokolüdür. Hat üzerinde bulunan bütün noktalar hatta veri basabilir ve veriyi okuyabilir. Fiziksel olarak CANH, CANL şeklinde isimlendirilen iki fiziksel hat üzerinden iletilir. Fiziksel hat üzerinde bulunan voltaj farkı üzerinden çalışır.

CAN Bus ile haberleşen bir ağın fiziksel bağlantısı aşağıdaki gibidir. Bir hat boyunca bir çok sistem bağlanabilir. Her bir sistem ağa mesaj gönderebilir ve okuyabilir.

CAN Bus'a bağlantı için transreceiver yapılarına ihtiyaç duyulur. Mikrodenetleyiciler ile CANH, CANL hatları arasında aşağıdaki gibi transreceiver yapıları kullanılır. Mikrodenetleyiciler tarafında Rx, Tx hatları ile iletişim kurulur.

Aşağıda verilen görselde CANH, CANL hatlarındaki değişim ve bu değişimin CAN Rx ucundaki karşılığını gözlemleyebilirsiniz. CANH, CANL aynı seviyede iken CAN Rx 1'dir. Aksi durumda CAN Rx 0 olur. 0 değeri CAN Bus için baskın bit olarak ifade edilir.

Bir önceki görsel üzerinden CAN Bus mesajını inceleyecek olursak;

  • Start of frame: Bir CAN Bus mesajı 0 biti ile başlar.
  • ID-Arbitration: Takip eden bitler mesaj ID sini ifade eder. Mesaj ID'si aynı zamanda paketin önceliğini de ifade eder. Örneğin aynı anda iki sistem hatta veri basmak isterse CAN Bus'ın önceliklendirme yapısına göre değerlendirilir. Çok basitçe ifade etmek gerekirse Veri gönderimi başladığı anda bir mesajın ID'si ne kadar 0 ile başlarsa o kadar baskındır. Görseldeki sıraya göre "00001xx" ve "00100xx" başlayan iki mesaj paketi gelirken birinci paket önceliklendirilir ve ikinci paketi gönderen sistem gönderimi durdurur.
  • RTR: Remote transmission request olarak geçer. Bir mesaj paketini başka bir sistemden talep etmek için kullanılır.
  • Control: Bu kısımda mesaj ile ilgili ek bilgiler yer alır.
    • IDE: ID Extend olarak geçer. 1 olması durumunda 18 bitlik daha ID kısmı aktif olur. Mesaj paketi toplamda 29 bitle ifade edilir.
    • DLC: Data length code olarak geçer. Mesaj paketinin kaç byte olduğunu ifade eder.
  • Data: Veri aktarma kısmıdır. Kullanıcının iletmek istediği veri tam olarak buradadır.
  • CRC: Veri paketinin doğruluğunu teyit etmek için kullanılır.
  • ACK: Gönderilen paketin en azından bir sistem tarafından alındığını ifade eder. Bu kısım Herhangi bir alıcı sistem üzerinden sürülür. Eğer CAN Bus üzerinde başka bir sistem yoksa bu bit 0 olmaz ve gönderici mesajın iletilemediğini anlar.
  • End of frame: Mesaj paketi sonunda 7 bit 1 gönderilir.

16 Aralık 2023 Cumartesi

Batarya Test Düzeneği ve Meganit LR6 AA alkalin 1.5 Volt Pil Değerlendirmesi @250mA

Çeşitli veri toplama işleri için tasarladığım esdaq ve elektronik yük olarak kullandığım Pratic Load Bank kartlarını kullanarak batarya değerlendirmesi yapabilmek adına bir düzenek ve LabVIEW ortamında demo bir program oluşturdum. Demo programına buradaki link üzerinden erişebilirsiniz (Özel bir amaca tasarlanmadığı için düzen problemleri vardır). Kullandığım pil yuvası da 3D yazıcıdan çıkartılmış bir yuvadır. Düzeneğin bir görseli aşağıda verilmiştir.


Oluşturulan yapının şema gösterimi de aşağıda verilmiştir.


Bu çalışmadaki amaç bataryaların farklı durumlarda gösterdiği davranışı kayıt altına almak ve SoC, SoH gibi hesaplamalar için girdi vermeyi sağlayabilmek.

Öğrendiğim kadarıyla kalem pil diye adlandırdığımız AA boyutta 1.5 V piller 250 mA sabit akımda 0.8 V a kadar geldiği süre üzerinden standard kapasite ölçümü yapılır. Bu şekilde bakınca örneğin 250 mA sabit akıma ayarlanmış bir pil 10 saat boyunca 250 mA akımı sağlarsa 10*250 hesabı üzerinden 2500 mAh kapasiteye sabittir denir.

Aşağıda verilerini paylaştığım pil testinde sabit 250 mA akım altında yaklaşık 6 saatlik bir deney gerçekleştirilmiştir. Pil gerilimi ~6. saatte 800 mV a gelmiştir. Bu verilerin ışığında pilin kapasitesini 6 h*250 mA=1500 mAh olarak hesaplayabiliriz. Bu hesap çekilen akım değerine göre değişecektir. Örneğin testi 500 mA ile yaparsak kapasite <1500 mAh olacaktır. Test 100 mA ile gerçekleştirilirse de kapasite >1500 mAh olacaktır.



İlerleyen süreçlerde farklı pillerin farklı akım değerlerinde testlerini girmeye çalışacağım. Yine de belki işe yarar diye yaptığım testin tüm verisini ham olarak aşağıdaki link üzerinden paylaşıyorum.

Label order: Row ID | Time Stamp (Millisecond) | Voltage (mV) | Current (mA) | Set Current (mA)

Veri seti

12 Aralık 2023 Salı

STM32 Serisi İşlemcilerde Timer/Sayaç Modülünü Interrupt/Kesme Modunda Başlatma #STM32Tips

STM32F ve STM32G serisi mikrodenetleyicilerde Device Configurator Tool ve HAL kütüphanesi ile oluşturulan yazılımlarda timer modülleri için gereken ayarlar yapılır. Bu kapsamda timerların prescaler ve counter period gibi seçenekleri ayarlanır. Bunlarla beraber timer interruptları enable edilir.

Bu şekilde konfigürasyon yapıldıktan sonra kod oluşturulur.

Oluşturulan kodda timer başlatılmamış şekilde bir yapı kullanıcıya sunulur. İlgili timerları interrupt modunda başlatmak için aşağıdaki fonksiyon kullanılır. Bu fonksiyonda altı çizili htimX ilgili timerı ifade eder ve X yerine timer numarası yazılır.

HAL_TIM_Base_Start_IT ( &htimX );

Timerlar için yapılan konfigürasyona göre bu fonksiyonun çağrılma yapısı değişiklik gösterir. Auto-Reload edilmiş bir timer için bu fonksiyonu bir defa çalıştırmak yeterlidir.

Belli bir duruma göze özellikle tetiklenecek bir yapı var ise bu fonksiyon her tetiklemede tekrar çağrılır. Şart değil ancak bu modda genellikle auto-reload disable edilmiştir.



Diyot Tipleri, Kullanım Alanları

Bu yazıda diyot tipleri ve ana kullanım alanları listelenmiştir. P-N Junction-General Purpose Diode: Akımın tek yönde iletilmesini sağlar. ...